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Abstract: The non-homogeneous ternary cubic diophantine equation 2322 x3x9zx4wx2z2w −=−−+ is analyzed 
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presented.  
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1 INTRODUCTION 

The Diophantine equation offers an unlimited field for research 
due to their variety [1-3]. In particular, one may refer [4-12] for 
cubic equations with  three unknowns. This communication 
concerns with yet another interesting equation 

2322 x3xzx4wx2z2w −=−−+ representing non-
homogeneous cubic with three unknowns for determining its 
infinitely many non-zero integral points. A few relations 
between the solutions and special number patterns are presented.    

2   METHOD OF ANALYSIS 

The given non-homogeneous ternary cubic diophantine 
equation is 

  2322 x3x9zx4wx2z2w −=−−+      (1) 

To start with, it is seen that (1) is satisfied by the integer triples 
given below: 

)126,306,6(
,)3,113,3(,),2,()w,z,x(

32322

3232232322

α+αα+αα
α+αα+ααα+αα+αα=  

However, we have other sets of integer solutions to (1).We 
illustrate below 

 the process of obtaining  different sets of integer solutions to 
(1): 

Set 1: 

On completing the squares,(1) is written as 
322 x9Q2P =+                 (2) 

where 

                           xzQ,xwP −=−=          (3) 

After some algebra,it is observed that (2) is satisfied by 

)n2m(n3Q,)n2m(m3P 2222 +=+=      (4) 

and 
22 n2mx +=                    (5) 

From (4) and (3) ,we have 

)n2m()1n3(z,)n2m()1m3(w 2222 ++=++=   (6) 

Thus,(5) and (6) represent the integer solutions to (1). 

Set 2: 

           Write 9 as 

                                  )22i1()22i1(9 −+=               (7) 

Substituting (5) and (7) in (2) and employing the method of 
factorization one has                   

.             3)n2im)(22i1(Q2iP ++=+     (8) 
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On equating the real and imaginary parts  ,we have 

            
)n2nm3()nm6m(2Q,)n2nm3(4)nm6m(P 32233223 −+−=−−−=      

     (9)       

Using (9) in (3), note  that 

                 

)nm6m()n2nm3(4n2mw
,)nm6m(2n2nm3n2mz
233222

233222

−+−−+=

−+−++=
                                                

(10) 

Thus,(5) and (10) represent the integer solutions to (1). 

Note 1: 

           The integer 9 on the R.H.S. of (2) is also represented by 

                          
9

)24i7()24i7(9 −+=  

The repetition of the above process leads to a different set of 
solutions to (1). 

Set 3: 

  Write (2) as 

                                1*x9Q2P 322 =+                         (11)       

Consider 1 as 

                                
9

)22i1()22i1(1 −+=      (12) 

Using (5) ,(7) and (12) in (11) and employing the method of 
factorization, one has 

3
)n2im)(24i7(Q2iP

3++−=+  

Following the procedure as in Set 2 and replacing m by 3M,n by 
3N,the integer 

solutions to (1) are given by 

             

)N2M)N2NM3(7)MN6M(4(9w
),N2M)N2NM3(8MN6M(7(9z,)N2M(9x

223223

2232)2322

++−−−=

++−−−−=+=  

Note 2: 

   One may also take 1 on the R.H.S. of (11)  in general as 

                     

2

222

2222

11
)26i7()26i7(1

,
)sr2(

)2rs2isr2()2rs2isr2(1

−+=

+
−−+−=

 

The repetition of the above process leads to  different sets  of 
solutions to (1).              

3  CONCLUSION 

In this paper, we have made an attempt to obtain all integer 
solutions to (1). To conclude, one may search for integer 
solutions to other choices of homogeneous or non-homogeneous 
ternary cubic Diophantine equations. 
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