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Abstract. The time second-order characteristic finite volume method is proposed for solving the one-dimensional Riemann-
Liouville space fractional convection-diffusion equation. To be specific, by employing the Euler-Lagrange integration
approach, the fractional convection-diffusion equation is transformed into a parabolic-like equation, simplifying its
numerical treatment. To achieve a high level of time accuracy, the second-order Runge-Kutta method is applied to solve the
characteristic line equation, while the Crank-Nicholson implicit scheme is employed to handle the discretized equations
efficiently. Furthermore, the parabolic-like equation is discretized utilizing piecewise linear finite elements to ensure the
spatial accuracy. Then, a detailed analysis of the coefficient matrix for iterative equation reveals favorable numerical
properties that enhance the stability and convergence of the proposed scheme. Numerical examples are given to verify the

convergence order of our scheme is O(h““) in space step and O(z'2 ) in time step. The results demonstrate the potential
of the proposed method as a powerful and effective tool for solving complex fractional convection-diffusion problems in

scientific and engineering applications.
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1 INTRODUCTION

In recent years, the theory of fractional calculus has developed
rapidly, and the research on its related properties has become
more and more important. As a non-local operator, the fractional
differential operator needs to depend on the time nodes before
and after its time calculation, and it is also closely related to the
length calculation in space. Thus, it is this property with memory
effect that makes it possible to describe a series of complex
dynamic changes in real life more accurately. Because of this,
the fractional calculus equations defined by fractional
differential operators is widely used in physics, chemistry,
biology and many other disciplines [1-7].

There are three common definitions of fractional derivatives:
Riemann-Liouville definition, Grunwald-Letnikov definition
and Caputo definitions, they are equivalent to each other under
certain conditions. Accurate numerical computation of
fractional convection-diffusion problems is challenging sexual
task. Especially for problems where advection dominates
diffusion, and where advective agitation can exacerbate
concentration gradients. Traditional numerical methods often

encounter problems of unphysical oscillations and excessive
numerical diffusion, and these methods cannot guarantee mass
conservation, but this property is required for many practical
mathematical model applications. Considering the difficulty of
finding the analytical solutions of the fractional differential
equation (FDE), there had been many effective methods
developed for solving the FDEs, such as finite difference
methods [8-12], finite element methods [13-15], finite volume
methods [16-19] and so on.

Since the finite volume method has local conservation, it is more
suitable for modeling conservative partial differential equations.
Pan et al. (2017) [20] presented a fast preconditioned iterative
finite volume method for solving steady-state space-fractional
diffusion equations. Fu et al. (2019) [21] proposed a time
second-order finite volume method for solving unsteady space-
fractional diffusion equations by Crank-Nicholson scheme
where the stability and convergence were proved in J?> — norm.

Zhang et al. (2005) [22] proposed the finite volume method to
solve the FADE, where the spatial derivative of the dispersion
term was fractional, but the scheme produced numerical
oscillations for the transport-dominated diffusive systems.
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It was well known that the characteristic methods [23] can
significantly reduce the truncation errors in time and allow for
larger time steps. Wang and Wang (2011) [24] proposed a fast
characteristic finite difference method for one-dimensional
fractional transient convection-diffusion equations based on fast
Fourier transformation and the scheme didn't preserve local
mass. Rui and Tabata (2010) [25] developed a mass-
conservative characteristic finite element scheme for solving
convection-diffusion problems. Colella and Woodwar (1984)
[26] developed a piecewise parabolic method (PPM) for solving
one-dimensional advection equations. While the method used
the parabola interpolation at the previous level, the local mass

conservation for the advection problems can be ensured. Further,

by introducing the conservative interpolation and the continuous
discrete fluxes [27-29] proposed the time second-order
characteristic finite difference method and finite volume method
solving high-dimensional advection-diffusion equations and
atmospheric pollution advection-diffusion problems. The papers
[30, 31] proposed the Eulerian-Lagrangian localized adjoint
method, which provided the desired local conservation where
local conservation was essential for some physical problems.
Liang et al. (2017) [32] developed a fractional step ELLAM
approach to high-dimensional convection-diffusion equation
with forward particle tracking. Until now, there was no work on
time second-order characteristic finite volume for solving the
space-fractional convection-diffusion equation.

In this paper, we propose a time second-order characteristic
finite volume method for solving the one-dimensional Riemann-
Liouville space fractional convection-diffusion equation. By the
Euler-Lagrange integration technique, we convert the
convection-diffusion equation into the parabolic-like equation.
Then, the second-order Runge-Kutta method is applied to solve
the characteristic line equation while the Crank-Nicholson
implicit scheme is used to solve the equations. The equation is
discretized by using piecewise linear elements. The properties
of the coefficient matrix of the iterative equation are analyzed.
Numerical examples are given to verify the convergence order
of our scheme is 1+ ¢ -order in space step and second-order in
time step.

The structure of this paper is organized as follows, Firstly, the
mathematical model and scheme is considered. Then, the
properties of the iterative matrix and error estimation are given.
Finally, some numerical examples are tested to verify the spatial
and time convergence order.

2 MODELING AND SCHEME

The space-fractional convection-diffusion equations with an
anomalous diffusion of order 0 < & <1 in the divergence form
are studied as
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ou o(Vu) 0 0"u 0"u
6t+((’9x_6x( [ (- )8(—x)1"B:f(x’[)’xe[a’b]’
u(x,0) =uy(x), x €[a,b],
u(a,t)=0, 0<i<T,
u(b,t)=0, 0<<T,
(D
l-a I-a
where V(a, t)ZV(b, t)=0. aTu and a—lf_a are
ox'™ o(—x)

utilized to denote the left and right Riemann-Liouville fractional
derivatives as:
0"u

j (x—5)""u(s)ds, e :7%6— j (5= %) "u(s)ds.
2

alfoz

axl a

F(a) ox

81—0: al—au

Let (x,)=K —(l-y)———|.  Then,
q ( a l-a a(_x)l—a
equation (1) can be rewritten into

ou a(Vu) 6(]

o ox _f (%) 3)

u(x,0)=u, (x), u(a,t) =0, u(b,t)=0.

n+l

The characteristic curve X(7;x,/"") from the point
(x,¢"") satisfies the following relations over the time interval

te(t",t""], e,

dX (z;x,t™"
WX(@x,07) =V(X(r;x,t"™), 1), 4)
dr
where 7 is the characteristic direction at the time interval

u
X, tn+1) = x . Now, we integrate a—
¢

with respect to X over [X,,X,] and use Leibniz' rule, it leads

[tn’tnﬂ] and X(th;

to
d (= (= 8u(x,t) dx dx
EL u(x,t)dx-j —dx+u(x2’t)d_t2_u(xl’t)d_tl

J-\z 8u(x D dxtu (2 )V (x5 ) =1 (X, 0) V (x,,2)

X

:J""z 6u(x,t) dx+r2 oV (x,t)u(x,t) &
ot ; X '

)

Further, we can have that

- j u(x, t)dxds — j —dxdt— j fdxdt. (6)
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The uniform conforming mesh on domain [a,b]x[0,7] is

b-a T
defined as Ax = and At =— . The staggered grid
M
nodes {x;} and {x,,,,} are set as
x,=a+ihx, =01 N, x,,=a+(i+1/2)Ax, i=0,1-,N=I.

(M

Integrating (6) over [¢",¢""'], we can obtain that

j;fﬂa " udds - jz%dt— [ [ faxr
®)

Let x,(t"")=x_,, x,(t"")=x,,,, and approximate (4)
by using second-order Runge-Kutta formula, we then get

~n+l/2

—Vian At, 9)

~n+1/2

—Vian At, X,

i+1/2 =X

X2 = Xisin i+1/2

where
n+1/2

Vi = [V(x o DY AV (s =V (5o AL ],

Averaglng the diffusion and the source terms along the
characteristic line, it follows that

(") (") At u@™Hog"™  rxneh oq”
[0 = e =S| [0 [
x (") x (") 2 {In@™h  ox x(")  Ox

At sz(t") il szm
2 Wsen )

(10)
Substituting (9) into (10), it leads to
I [I an idx j ‘Zixdx] j dx+—(j DA ‘dx+j )
11

In this study, the finite volume method is used to solve equation
(11) effectively. The specific implementation process will be
introduced in the next subsection.

Finite Volume Method

Let S(;V be the space of continuous and piecewise linear
functions with respect to the spatial partition, which vanishes at
the boundary, and @; (x) is the nodal linear basis function such
that

(x—x, )/ Ax, xelx;,,x,],
@, (x)=1(x;,,—x)/Ax, xe[x;,x,,],j=1-,N-1.
0 else.
(12)
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N-1
1 . o
(x)= ZM;H ?; (X) be the numerical approximation
j=1
to the exact solution of (11), we can have that

N Xis1/2
2| wa)dv—Z

MK e
+TZ% (D50, (
=

n+l

Let uh

I: y(pj( +1/) D 501 42] ZVJ. ?’,(x)dx

%) DL, (T o [ e [ o)
(13)

I-a l—a
axl—a_( _7/)8( )la

we can obtain that the follow lemmas.

where D =y . By calculating,

Lemma 1. For o, (X)(] =12, ',N—l) , we can have that

L |j—-i=]
Xiv1/2 AX .
J.X,-fl/z ¢j (x)dx N ? 6’ J B l’ (14)
0, else.
and
al—a O >
Q; (xH/z ) > J =
ox'™ Ax"” “F(a+1) S ;s JSU,
l-a . .
0 (Pj(xi—l/z) Siivts Jjzi-l,
o(—x)" Ax"” “F(a +1) |0, j<i-1,
1- . .
0P, (%) 0, J>i+l,
P T AL a[‘(a+l) Sijus JS i+1,
1- . .
a a?i (xi+1/2) S i J 2 L
a(=x)"" Ax" “F(a' + 0, j<i
(15)
Similarly, we have
0, J>1,
alia% (%) _ 1 (K =% J=i
o AT (a+1) | (R =X, ) 2%, X)) =i
(X1 _xﬁl)a —2(x_y —X; )+ (X _xj+|)a’ JH1<i
0, J+l<i,
alia‘pj ()?,71'2) _ 1 (X/” —EH,Z)“ ’ j+1 =1
A=) A () [ ()~ T ~2(x, =5 )" j=i,
(x‘,u —X)" _2()‘, =X )" +(x1>1 =X J>1,
(16)

and
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alia‘p/ (fm/z) _ 1

= AT(a+1)

alia(ﬂj (J‘7i+1/z) _ 1

o-x)"" AdT(a+l)

where

(1/2)°

s, =1(3/2)"=2(1/2)"
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0,
(Ewl/z —Xi )a >

(X2 _x]fl)a =2(X1 _x,')a >

(X1 _XH)(I =2(X.0 _x,)a + (X _x_/+l)a’

0,
(x‘,u =X)" s

(x,u *fm/z)a 72(x/. *fm’z)a 5

(xj+l =X 2)a _2(x/ =X 2)a +(x/>1 _)?M/z)as

k=0,

k=1,

J-1>i,
J-1=i
J=i,
Jj<i,
J<i,
Jj=i
J-1=i
J=1>1,

an

(k+1/2)" =2(k=1/2)" +(k-3/2)" 2<k<N-1.

(18)

By introducing the following symbol, equation (16) and (17) can

be written as

0, j>i, 0, j+l<i,
al—a¢j (271/2) _ 0> ] :i, al’awj ()7,-71/2) _ 0 j-‘rl = i,
o' L, j+l=i, o(-x)"™ k., j=i,
k,, j+2<i, k,, j-12i,
0, j—-1>i, 0, j<i,
09, (X12) _ S0, J-l=i, 07, (3.n) _ S, J=1s
axlia §1 > ] = is a(_x)lﬂz §1 5 _]_l :i’
5., j+1<i, §,, Jj-2=i.
(19)
Next, we give the matrix format of (13). Let
T
U= [l ule iy, ]
F' = Tn rn Zzn T
- fl > J2 sJN-1 | >
T (20)
Un+1 — [uerl’u;Hl’ ’ulr\t]tll:l ,
Fn+1 _ T+l pa+l T+l T
—|J1 )2 ’fN—l >
_11 1 fr'+l/2 n
where f; =—L f(x,t")dx and
Ax Xi-172
~, 1 Xis1/2
](;n-%-l — _J. f(.x, tn+1 )d.x
Ax X172

Define the mass matrix A as
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6 1 0 - 0 0]
6 0
Ll 6 -0 on
g1 . . . 0
0 . .61
0 0 6|

Then, the stiffness matrix B = T + (1 - }/)TT with

Sy =8, —S, 0 0 0
5, =S, Sy =S, —-s, ) 0
: s, —s S, — S :
T= 1‘ 2 0‘ 1 ’
0
Sz ™Sy So =5 Sy
Syoa 7Sya Sz TSho §1 =8, So =58 ]
(22)
and B = yP + (1-7)Q with
k-5 -3, 0 -« 0 0 |
17 ~2 0 ~1 _50 ' . 0
P- 17 ~2 ko _51 : ,
0
N-2,1 _'§N—1,1 i i . 0 ~1 _50
L kN—l,l _§N,l kN—l,Z _§N,2 1 ~2 ko _51_
(23)
and
Eo __];1 El _]Ez "'_ E1 N-2 ];1,1\/71 EI,N—I _]Euv
-k, Sy =k s -k . Sy — ko
0 —k, 5 -k . :
Q= Jo TR :
0 Sk 5k,
L0 0 —k, 5ok
(24)

i1/

=~ . . 1 X/
Let A(Z,)) :E J. 1: @,(x)dx, by referring to equation
(13), we have that

(A+7B)U™" = (A+n,B)U" +%(F” +EY), (25)

—KAt
2l (a + DA

KAt
2T (a +1)Ax*"

where 77, =

2> h =

Remark 1. Assuming that | X, ,, =X, , [SAX/2, we can
have that
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J;‘i] ( /+I x)dx ]zl_lo
oz _ 1! L‘ (x—x;. 1)dx+I g, o =i,
‘Lﬂ/z ¢j (x) _E “5'2
J‘ (x x )dx: ] =i+ 1,
0, else.
(26)

Thus, we derive that A is tri-diagonal matrix.

3 PROPERTIES OF ITERATIVE MATRIX

The Properties Of s,
For 0 < & <1, define G(x) as
G(x)=g(x)—g(x-1),x>2, gx)= (x+%)“ —(x—%)“, x>1.
(27)
Thus, we can have that
N-1 N-1
D Gk)= (gk)—g(k—1))=g(N-1)-g(1).
k=2 k=2

(28)

Further, we can derive that

g (x)= a[(x+l/2)0k1

g (x)=ala- 1)[(x +1/ 2)“72

-(x-1/2)"" <0,

-(x-1/2)7]>0.

(29)
So, we get that
G2)<GB)<GAE)<-<G(k)<---<0, (30
and G(0) >0, G(1) is dependent on & .
Define G(x) as
G(x)=G(x)-G(x+1), x>2, (1)
Le.,
Gk)y=s,—s,,,, k=23 ,N-1. (32

It is not difficult to derive that

gm(x) =a(a—1)(a_2)[(x+l/2)a72 _(x_l/z)a72:| <0,
(33)

Thus, it holds that
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G”(x) = g”(x) —g”(x—l) <0, 5(x) = G'(x) —G'(x+1) >0,
(34)

We can prove that

G(2)<GB)<G(d) << (35)

The properties of matrix

Let

] =ttt ] (36)

, :[toatla

where
t,=G(k), k=0,1,2,...,.N-1, ¢t ,=-G,, t , =0, k=2,3,..., N—1.

Lemma 2. For O<a<l, YNeN", T is strictly

diagonally dominant iff s, —s, <0 .

Proof. When s, —s, <0, it holds that

N-1 N—-
Z| | z Sk+1 S1+SN’ (37)
k=1 =
Due to §, <0, it follows that
N-1
D[] +ei]) =50 =5+ 5y <sp=s,=t,. 38
k=1
We complete the proof. O
Let
b, =[bysbyseiby 1] s by =[Bosbserirby ] s (39)
with
by =s,—5,,
b, =}/(s1 —sz)—(l—y)so,
by =(1=7)(5,=5;) =75, (40)
b=y (s —8.1), k=2,3,...,N—1,
b, = (l—y)(sk —sk+l), k=2,3,...,N-1.
When 0 <y <1, by (35), we have that
N-1 N
2Bl +[oul) =B+ o+ 2 (s =50 = (B + [ | =5, + 55
k=1 2
(41)

Lemma 3. When 0<y <1, 0<a <1 and s,—5,<0,B
is strictly diagonally dominant matrix.

Proof. when s, —5, <0, it follows that

b,<0, b, <O0. 42)
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Further, we can obtain that

N-1
2 ([ +1b-1]) = 50
k=1

We complete the proof. O

=8, +5y <8, =, :|b0|. (43)

Remark 2. By Lemma 3, we can prove that the coefficient
matrix A+7,B are
solvability.

strictly diagonally dominant and

4 ERROR ESTIMATE

4.1 TIME ERROR ESTIMATION

The initial value problem of the first-order ordinary differential
equation (4) is studied as

dx
— =V (t,x),t €[0,T],
5 60,0 0.T] )

x(0) = x,.
Next, we consider the second-order Runge-Kutta method as

X, =X, +At(C1K1 +02K2),
K =V (t"x,), 45)

K, =V (t"+ At x, + 1, ALK, ).

Here ¢,,C,, /A, , 4, are all undetermined constants. According

to the definition of local truncation error, the local truncation

error of this method is

T, = x(t”+1 ) - x(t” ) —At[clV(t” ,X, ) + cZV(t” + LAt X, + 1, ALV, )},
(46)

where x, = x(t"),

T

n+l >

V.=V(t",x,) .

the Taylor expansion of the terms for the above equation

In order to get p-order

should be done at (¢",x,) and the expansions are as follows

()=, + Ao, + B0 (At') +o(an'),
47)
with
X, V(t”,x)
,*dgV(t () =8 (63, ) 4V (0%,
A GRS A (S x)+V"-V“(t,,,x")+Vx(:”,x,,)[V/’(z",xﬂ)+VHV;(z",x”)],

(48)

and
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V(¢ + AL X, + 1, AV, ) =V, +V, ('3, ) AL+ V. (",x,) 11, ALV, + O((AL)?).

(49)
Substituting (47), (48) and (49) into (46), we can have that
”,x”)+VX'(t”,x”)V”]

x,) At Y, (t”,x”)V"At)} +o((an)

T, =AtV, +%[V'(t

AT (AT A TS

=(1-¢ cZ)VAtJr(%chLJ (e, ) (ary? +(%—c,uuj (103, )7, (807 +0((Ar)°).

(50)
For the scheme (®), namely
a=1/2,¢c,=c,=1/2,4, = u,, =1, by substituting these
parameters into equation (50), we can get 1, | = ((Al‘)3) .

Therefore, it shows that the proposed scheme (13) is second-
order accurate in time.

4.2 SPACE ERROR ESTIMATION

Define
Tig(x )——I (x—5)""g(s)ds,
Tig(x )‘ﬁj (s—0)'g(s)ds, (51
e (B2 P

a( X

Lemma 4. Let g(x) e (Cla,b], for 0<a <1, there is a
constant C independent of /1 , satisfy

Ll =Ch, Tie(x)

Xi-12

Xisl/2 — Cha_ (52)
Xi-12

Proof. By the definition in (51), we can get that

- e F( ) j 806 )( vz = )lH = (%02 _S)ail)ds
1 Xi+1/2 -
m i1z g(S)(le/z_s) ldS::IIJ"Iz;

(53)

If sela,x_,,],ie.,

|11|< "g" IX 1/2 X~

s OH (%10 —s)ail ds

(o)
= F(l‘l;g_llkl)((xillz _a)a _(x;+1/2 - a)a +('xi+1/2 ~ X )a ) < C"g"ha )
(54)
where ”g” = max |g| s €[x 0, X0 ],
1< el §)lds = |l e ¥ <clolpe
| 2| [‘(a)J. Xiviza = T(a+ 1)( i+1/2 xi—l/z) = "g" .
(55)
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We complete the proof. O

Lemma 5. Define

Fg(x) = ig(xi)co,»(x)- (56)
The spatial truncation error is
r" =KDx”fy (u(x,tn)—Phu(x,tn )), (57)
where
% ’2 |< Ch'™e. (58)

5 NUMERICAL EXPERIMENTS

In this section, some numerical examples are given to verify the
. 1 .
convergence order of our scheme is of convergent O(h ") in
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space and is O(z’z) in time. In example 1 and 2, we assume

that the domain [@,b] =[0,1] and the total time 7 =1.

Example 1. Take the initial solution #(x,0)=4x>(1—x)’
and V' (x) =V, (1—x)x. The source function is given as

f(x,0)=—de”' X’ (1-x)" +4V,e” (3x* (x — 1)’ (1-2x)) - 8¢ 'K (yo(x, ) + (1 - ) oo(1 - x, @),
(59)

with
B xa ~ 6xl+a N 12x2+a
I'l+a) TQ+a) I'G+a)’

o(a,x) (60)

where ¥, = 0.1, K =1. We can solve the exact solution as

u(x,t)=4e"'x*(1-x)°. (61)

The convergence order of our scheme is given in Table 1 - Table
2. In Table 1, we take the time step Af =1/10000 and the

space h=1/10,1/20,1/40 and 1/ 80, respectively.

TABLE 1. ERRORS AND ORDERS OQF CONVERGENCE IN SPACE FOR EXAMPLE 1.

h 1/10 1/20 1/40 1/80
e, 4.4447E-03 1.2397E-03 3.8223E-04 1.3582E-04
y=0.0
order - 1.843 1.697 1.499
e, 4.0033E-03 9.9995E-04 2.4622E-04 6.0535E-05
a=0.1 y=0.5
order - 2.013 2.021 2.024
e, 4.4002E-03 1.2232E-03 3.7823E-04 1.3589E-04
y=1.0
order - 1.847 1.694 1.477
e, 7.0972E-03 2.1115E-03 6.3768E-04 1.9716E-04
y=0.0
order - 1.749 1.727 1.693
e, 2.9837E-03 6.8737E-04 1.5696E-04 3.5858E-05
a=0.5 y=0.5
order - 2.118 2.131 2.130
e, 7.1700E-03 2.1510E-03 6.5292E-04 2.0284E-04
y=1.0
order - 1.737 1.720 1.687
a=09 y=0.0 e, 8.0962E-03 2.2775E-03 5.8661E-04 1.5065E-04

01250402003-7
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order - 1.830 1.952 1.966

e, 2.0334E-03 4.7468E-04 1.1334E-04 2.7743E-05
y=0.5

order - 2.099 2.066 2.030

e, 9.5268E-03 2.5969E-03 6.6695E-04 1.7157E-04
y=1.0

order - 1.875 1.956 1.964

From Table 1, we can observe that the space convergence order
of our scheme tends to 1+ ¢ when the space fractional order

a=0.1, 0.5 and 0.9. under the spatial discrete steps /4 tends

to zeros. Meanwhile, it is not difficult to find that the space order

©— gamma=0.0
#— gamma=1.0
4 y=(1+alpha)x

log2(error)
3 &

log2(error)
S 3

-9 -8 -7 6
log2(h)

A a=0.1

©— gamma=0.0
4 gamma=1.0
y=(1+alpha)x

-8 =T 5 -4 -3

6
log2(h)

B)a=0.5

is plotted in Figure 1 as follows.

tends to second-order when the left and right diffusion weight
¥ =0.5 . Moreover, the space convergence order in Example 1

©— gamma=0.0
4 gamma=1.0
y=(1+alpha)x

log2(error)
o .

-9 -8 =T

6
log2(h)

©) a=0.9

FIGURE 1. THE PLOT OF SPACE CONVERGENCE ORDER FOR EXAMPLE 1.

From Figure 1, we can clearly see that the spatial convergence
order of the proposed scheme is 1+ ¢ . Next, we analyze the

time convergence of our scheme.

TABLE 2. ERRORS AND ORDERS OF CONVERGENCE IN TIME FOR EXAMPLE 1.

In Table 2, we take Af=0(.14"**’? with the space step
h=1/10, 1/20, 1/40. 1t is easily to see that the proposed

scheme is of convergence second-order in time. This conclusion

can be found more intuitively in Figure 2.

h 1/10 1/20 1/40

e, 2.7462E-03 8.9851E-03 2.8862E-04
y=0.0

order - 2.901 2.948

a=0.1

e, 2.4248E-03 8.5695E-04 2.7510E-04
y=0.5

order - 2.716 2.967
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e, 2.7904E-03 9.0238E-03 3.0414E-04
y=1.0
order - 2.886 2.901
e, 5.7360E-03 1.5033E-03 4.0803E-04
y=0.0
order - 2.511 2.445
e, 2.2549E-03 5.9792E-04 1.7147E-04
a=0.5 y=0.5
order - 2.729 2.361
e, 5.7787E-03 1.5195E-03 4.1437E-04
y=1.0
order - 2.524 2.456
e, 6.7922E-03 1.8526E-03 4.7596E-04
y=0.0
order - 1.968 2.058
e, 1.5378E-03 4.1252E-04 9.0653E-04
a=0.9 y=0.5
order - 1.993 2.295
e, 8.3507E-03 1.9659E-03 4.4798E-04
y=1.0
order - 2.191 2.240
12 1 10 ‘0;;(‘) -8 -7 -6 ) -12 11 -10 |oég(t) -8 -7 -6 12 11 10 |o;;(t) 8 7 6
A a=0.1 B)a=0.5 © a=0.9

FIGURE 2. THE PLOT OF TIME CONVERGENCE ORDER FOR EXAMPLE 1.

Example 2. Take the initial solution #(x,0)=x(1—x) and /(x0=ex(-x)+¥,e'Gx*(1-x)’(1-2x) ~K(yP(x,0) +(1-7)P(-x,0)),

.. 62
V(x)=V,(1- x)> X" . The source function is set as ©
with
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a-1

X 2x“
(@) Tl+a)’

u(x,t)=¢€'x(1-x). (64)

P(x,a) (63)

Similarly, the computational results are recorded as follows.
where ¥V, =0.1, K =1. The exact solution is solved as

TABLE 3. ERRORS AND ORDERS OF CONVERGENCE IN SPACE FOR EXAMPLE 2,

h 1/10 1/20 1/40 1/80
e, 1.1119E-03 3.0995E-04 9.5591E-05 3.3820E-05
y=0.0
order - 1.843 1.697 1.499
e, 1.0083E-03 2.4989E-04 6.1555E-05 1.5134E-05
a=0.1 y=0.5
order - 2.013 2.021 2.024
e, 1.1001E-03 3.0582E-03 9.4558E-04 3.3974E-05
y=1.0
order - 1.847 1.693 1.477
e, 1.7743E-03 5.2789E-04 1.5942E-04 4.9290E-05
y=0.0
order - 1.749 1.727 1.693
e, 7.4593E-03 1.7184E-04 3.9242E-05 8.9647E-06
a=0.5 y=0.5
order - 2.118 2.131 2.130
e, 1.7925E-03 5.3776E-04 1.6323E-04 5.0711E-05
y=1.0
order - 1.737 1.720 1.687
e, 2.0241E-03 5.6940E-03 1.4715E-04 3.7663E-05
y=0.0
order - 1.830 1.952 1.966
e, 5.0837E-04 1.1187E-04 2.8336E-05 6.9352E-06
a=0.9 y=0.5
order - 2.099 2.066 2.030
e, 2.3817E-03 6.4924E-04 1.6737E-04 4.2895E-05
y=1.0
order - 1.875 1.956 1.964
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FIGURE 3. THE PLOT QF SPACE CONVERGENCE ORDER FOR EXAMPLE 2.
TABLE 4. ERRORS AND ORDERS OF CONVERGENCE IN TIME FOR EXAMPLE 2.
h 1/10 1/20 1/40
e, 6.6856E-03 2.2463E-04 7.2157E-05
y=0.0
order - 2.901 2.948
e, 6.0621E-04 2.1424E-04 6.8776E-05
a=0.1 y=0.5
order - 2.716 2.967
e, 6.9762E-04 2.3096E-04 7.6035E-05
y=1.0
order - 2.886 2.901
e, 1.4399E-03 3.7582E-04 1.0201E-04
y=0.0
order - 2.511 2.445
e, 6.3373E-04 1.4948E-04 4.2868E-05
a=0.5 y=0.5
order - 2.729 2.361
e, 1.4447E-03 3.3799E-04 1.0359E-04
y=1.0
order - 2.524 2.456
e, 1.8541E-03 4.7506E-04 1.1826E-04
a=0.9 y=0.0
order - 2.063 2.106
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e, 5.9003E-04 1.6085E-04 4.1629E-05
y=0.5
order - 1.969 2.048
e, 1.8740E-03 4.8283E-04 1.2039E-04
y=1.0
order - 2.054 2.104
2 1 10 [og-gm 8 7 5 2 11 10 |og§(t) 8 7 6 2 1 10 Icg-zm 8 7 6
A) a=0.1 B) a=0.5 ©) a=0.9

FIGURE 4. THE PLOT OF TIME CONVERGENCE ORDER FOR EXAMPLE 2.

By Table 3 and Figure 3, we can find that our scheme tends to
1+« in space. Furthermore, By Table 4 and Figure 4, it is clear

that our scheme is of convergence second-order in time. These
results once again verify the convergence order of this study.

Example 3. The Gaussian distribution is utilized to display the
convection-diffusion movement. We take the domain

[a,b]=[-L1], V(x)=V,(1-x)x , where V,=1. Let
K =0.3, and the initial solution

_(x—xp )2

u(x,0)=e 2

(65)

In Figure 5, the movement of Gaussian peak with the different
@ and? is given. When the two coefficients become bigger,
the diffusion behavior over time is not significant. Figure 6
shows that when the weight 7 becomes bigger, the left
diffusion is more obvious at the same & . These results vividly
illustrate the feasibility and effectiveness of this scheme in
simulating convection-diffusion phenomena.

02

015

u(x.t)
u(x,t)

01}

/ \ 015 | \ 03
N\ 0 % 02
/7 \ 1 /. N\ b
0.05 ) . \\\\ ///
O\ 005 /4 NN 01f \
NN / N N\ N
%1 08 06 04 02 0 02 04 06 08 1 %7 08 06 04 02 0 02 04 06 08 1 %) 08 06 o4 02 0 02 o4 06 08 1
X X X
A a=y=0.1 ®B)a=y=05 © a=y=09
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FIGURE 5. NUMERICAL SOLUTION AT DIFFERENT TIMES FOR EXAMPLE 3.

gamma=0.0
gamma=0.2
gamma=0.4
01 gamma=0.6
gamma=0.8
gamma=1.0

gamma=0.0
gamma=0.2
gamma=0.4
gamma=0.6
gamma=0.8
gamma=1.0

02

u(x.t)
)
u(x,t)

gamma=0.0
gamma=0.2
gamma=0.4
gamma=0.6
06 gamma=0.8
gamma=1.0

u(x,t)

B)a=0.5

02 04 06 08 1 -1 08 -06 -04 -02 0 02 04 06 08 1

FIGURE 6. NUMERICAL SOLUTION IN DIFFERENT PARAMETERS FOR EXAMPLE 3.

6 CONCLUSION

In this study, a time second-order characteristic finite volume
method is successfully developed to address one-dimensional
Riemann-Liouville space fractional convection-diffusion
equations. By reformulating the original equation into a
parabolic-like structure, the proposed method simplifies
computational complexity while ensuring accuracy. A
combination of the second-order Runge-Kutta method and the
Crank-Nicholson implicit scheme demonstrates high efficiency
and precision in temporal discretization, complemented by the
spatial accuracy achieved through piecewise linear finite
elements. Rigorous analysis confirmed the stability and
convergence of the iterative coefficient matrix. Numerical
experiments validate the theoretical convergence orders of

O( h1+0‘) in space and O(rz) in time, and also illustrate our

method’s capacity in simulating the diffusion and convection
behaviors under diverse parameter settings. The findings
underscore the effectiveness and versatility of the proposed
approach, making it a valuable contribution to the numerical
study of fractional differential equations in applied sciences and
engineering.
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