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Abstract: As critical components in fastening systems, screws play an essential role in structural connection and load 
transmission, where surface quality directly affects product safety and reliability. To achieve efficient and accurate detection 
of various surface defects on screws, this paper proposes a detection model based on the YOLO11-DySample algorithm. The 
proposed method adopts YOLO11 as the backbone detection framework and integrates the lightweight and efficient 
DySample dynamic upsampling module, which enhances feature reconstruction and improves the perception of small defects. 
Experimental results on a screw defect dataset demonstrate that the proposed model outperforms other benchmark 
algorithms in several key performance metrics, achieving a mAP50 of 0.991, mAP50-95 of 0.859, precision of 0.996, and 
recall of 0.994, indicating excellent accuracy and robustness. Further analysis of loss curves and precision-recall curves 
confirms the model’s convergence and generalization capability. Visual inspection results show that the model can effectively 
identify typical defects such as scratches and dents, demonstrating strong potential for practical industrial deployment. 
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1 INTRODUCTION 

Fasteners, as essential components in mechanical structures for 
connection and load transfer, play a critical role in ensuring 
structural integrity and service reliability [1–3]. The surface 
quality of fasteners—particularly screws—has a direct impact 
on product safety and performance. In actual manufacturing 
processes, various types of surface defects may occur on screws, 
including scratches, coating irregularities, dents, unprocessed 
areas, and abnormal surface coloration [4]. These defects can 
significantly degrade the performance of fasteners and, in severe 
cases, lead to product rejection and scrapping. Although 
multiple inspection methods exist, most fastener manufacturing 
enterprises still rely heavily on manual inspection. This 
approach is not only inefficient and labor-intensive but also 
prone to oversight due to operator fatigue and subjectivity, 
potentially resulting in batch-level product recalls and 
substantial economic losses. 

Conventional methods for industrial surface defect detection 
primarily include visual inspection, magnetic particle testing, 
eddy current testing, and machine vision-based techniques [5]. 
While manual inspection remains widely used, it suffers from 
low efficiency, high error rates, and heavy dependence on 
operator experience, making it unsuitable for continuous high-
throughput production lines. Magnetic particle and eddy current 
testing exhibit certain advantages under specific conditions but 

are limited by strict requirements on surface condition, material 
type, and electromagnetic properties of the workpiece [6,7], and 
are easily affected by environmental factors. Moreover, these 
traditional techniques often fail to provide real-time and 
comprehensive information about defect morphology and 
spatial distribution. 

In recent years, with advances in computer vision and deep 
learning, machine vision-based defect detection has become a 
prominent research focus. This approach integrates image 
acquisition, preprocessing, feature extraction, and pattern 
recognition to enable fast and accurate identification of surface 
defects [8,9]. It offers advantages such as non-contact operation, 
high precision, and full automation, making it particularly 
suitable for large-scale industrial applications. Previous studies 
have demonstrated that deep learning-based frameworks such as 
YOLO [10], Faster R-CNN [11], and ResNet [12] have achieved 
promising results in detecting surface defects on industrial 
components like rail steel [13], magnetic disks [14], and 
aluminum alloy wheels [15]. 

However, research on defect detection for small-sized fasteners 
such as screws remains relatively limited. There is still a lack of 
dedicated vision-based detection systems capable of handling 
the complex geometries and subtle defect features typical of 
such components. To address this gap, this study proposes an 
automatic detection system tailored for screw surface defect 
identification in mass production settings. The system integrates 
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high-resolution image acquisition hardware, image 
preprocessing algorithms, and a lightweight deep learning-based 
classification network. It is capable of efficiently detecting and 
accurately classifying multiple types of surface defects on 
screws, providing a technical foundation for intelligent quality 
control in fastener manufacturing enterprises. 

2 METHODOLOGY 

As a widely adopted object detection approach, the DySample-
based YOLO11 model proposed in this study enables efficient 
acquisition and identification of screw surface defects from 
images. 

To improve both the detection accuracy and inference efficiency 
for screw surface defects, this paper introduces a lightweight and 
high-performance dynamic upsampling module, DySample, 
into the single-stage detector YOLO11 [16]. The resulting 
enhanced model, referred to as YOLO11-DySample [17], is 
illustrated in Figure 1. The proposed architecture retains the 
fundamental structure of YOLO11, including its backbone 
network and multi-scale detection heads. However, traditional 
upsampling operators in the feature fusion pathway are replaced 
by DySample modules. This modification facilitates more 
effective transmission of high-level semantic information to 
lower-level spatial features, thereby enhancing sensitivity of the 
model to fine-grained defect regions. 

DySample is a parameter-efficient dynamic resampling module 
that does not require any custom CUDA operations. It maintains 
a low computational footprint—characterized by reduced 
parameter count, FLOPs, and inference latency—while offering 
strong generalization performance. Prior research has shown 
that DySample outperforms traditional upsampling techniques 
across various dense prediction tasks, including semantic 
segmentation, object detection, and instance segmentation [18]. 
The module dynamically generates sampling offsets and fusion 
weights based on the input feature map, enabling pixel-level 
information enhancement. This is particularly advantageous for 
detecting subtle surface defects on screws, such as scratches and 
micro-cracks. 

As illustrated in Figure 1, the YOLO11-DySample architecture 
integrates DySample modules into its multi-scale detection 
branches in place of conventional upsampling layers. These 
modules work in conjunction with feature fusion blocks such as 
C2 and C3 to improve overall detection precision of the network 
without compromising real-time performance. The redesigned 
architecture preserves the end-to-end efficiency of the original 
YOLO11 while enhancing robustness and adaptability under 
complex defect scenarios. 

  

FIGURE 1 YOLO11-DYSAMPLE MODEL STRUCTURE 

3 EXPERIMENTAL RESULTS AND 

ANALYSIS 

This section presents the screw surface defect detection 
experiments, including dataset construction, evaluation metrics, 
and the comparative results between the proposed YOLO11-
DySample model and other methods. 

3.1 EXPERIMENTAL DATASET 

The dataset used in this study was built using a screw image 
acquisition system independently developed by the research 
team in collaboration with an industrial partner. The system 
consists of a Hikvision MV-CS050-10GC color camera paired 
with an MVL-KF1228M-12MPE lens. All images were 
captured at a resolution of 672 × 384 pixels. A total of 4,100 
valid screw images were collected to form the dataset for 
training and evaluation. 

3.2 EVALUATION METRICS 

To comprehensively evaluate model performance after training, 
four key indicators were employed: 

(1) Precision (P): the proportion of correctly predicted positive 
samples among all predicted positive samples. 

(2) mAP50: mean average precision when the Intersection over 
Union (IoU) threshold is set to 0.5. 

(3) mAP50-95: mean average precision averaged over IoU 
thresholds from 0.5 to 0.95 with a step of 0.05. 

(4) Recall (R): the proportion of correctly predicted positive 
samples among all actual positive samples. 

3.3 EXPERIMENTAL RESULTS 

To validate the proposed method, three comparison models were 
selected: YOLO11-UpSample-Conv, YOLO11-C3K2Ghost-all, 
and YOLO11-DWConv. All models were evaluated using the 
aforementioned metrics, and the results are summarized in Table 
1. 
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TABLE 1 COMPARISON RESULTS OF DIFFERENT METHODS 

Method P mAP50 mAP50-95 R 

YOLO11-
UpSample-Conv 

0.975 0.994 0.76 0.987 

YOLO11-
C3K2Ghost-all 

0.996 0.994 0.746 0.974 

YOLO11-
DWConv 

0.992 0.994 0.75 0.981 

YOLO11-
DySample 

0.996 0.995 0.859 0.994 

Among the four improved YOLO11-based models, a 
comprehensive analysis based on precision, recall, mAP50, and 
mAP50-95  yields the following observations: 

First, as shown in Table 1, the YOLO11-DySample model 
achieves the highest precision (0.996), recall (0.994), and 
mAP50-95 (0.859) on the validation set, indicating superior 
capability in detecting multiple types of screw defects with high 
stability. As illustrated in Figure 2, the P-R curve of this model 
maintains excellent precision even in high-recall regions, 
suggesting a favorable balance between precision and recall 
with minimal false positives. By contrast, YOLO11-
C3K2Ghost-all also reaches a high precision of 0.996, it exhibits 
relatively lower recall (0.974) and mAP50-95 (0.746). The 
slight decline observed in its P-R curve at high recall levels 
indicates limited ability to detect fine-grained or ambiguous 
defects, resulting in a higher risk of missed detections. The 
YOLO11-C3K2Ghost-all model demonstrates strong false-
positive suppression capability, as reflected by its high precision, 
but its overall performance in recognizing subtle or edge-blurred 
defects remains suboptimal. Meanwhile, the baseline model 
YOLO11-UpSample-Conv shows balanced performance across 
all metrics (P = 0.975, R = 0.987, mAP50-95 = 0.760), serving 
as a reliable reference. Nevertheless, its accuracy and efficiency 
remain inferior to those of the proposed YOLO11-DySample 
framework 

  

FIGURE 2 P-R CURVES OF MAP50 WITH DIFFERENT 

ALGORITHMS 

To further verify the training stability and generalization 
capability of the optimal YOLO11-DySample model, both 
training and validation loss curves were plotted. As seen in 
Figure 3, the training loss consistently decreases and stabilizes 
over time, while the validation loss exhibits smooth 
convergence without significant oscillation or overfitting. This 
confirms that the model maintains strong generalization during 
training. 

The small gap between training and validation losses in later 
epochs further indicates that the designed network architecture 
and parameter settings effectively fit the training data while 
preserving robust performance on unseen samples. This is 
consistent with the high precision and recall observed in the P-
R curve, validating the reliability of YOLO11-DySample in 
screw surface defect detection tasks. 

  

FIGURE 3 LOSS CURVES OF MODEL TRAINING AND 

VALIDATION 

Finally, to visually demonstrate the practical performance of the 
proposed model, representative detection results on screw 
images are provided in Figure 4. The YOLO11-DySample 
model accurately detects a variety of defects—including surface 
scratches, dents, and color anomalies—with precise boundary 
localization and correct defect classification, showcasing strong 
detection robustness. 
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Even under complex backgrounds or multi-target interference 
conditions, the model retains high stability without significant 
false positives or missed detections. These results further 
confirm comprehensive performance advantages of the model, 
particularly in capturing small-scale and fine-grained defect 
features. Pixel-wise feature enhancement achieved by the 
DySample module plays a crucial role in this improvement, 
leading to detection outputs with precise alignment to actual 
defect distributions. 

  

FIGURE 4 DETECTION EFFECT 

In summary, the YOLO11-DySample model demonstrates 
superior performance in both detection accuracy and stability, 
offering an effective solution for screw defect detection. 

4 CONCLUSION 

To address the inefficiencies and high miss rates associated with 
manual surface defect inspection in fastener production, this 
paper proposes an automatic screw surface defect detection 
method based on an improved YOLO11 backbone network. By 
integrating the DySample upsampling module, the model 
significantly enhances feature restoration and spatial alignment 
capabilities, thereby improving its sensitivity to small targets 
and defects with ambiguous boundaries. Comparative 
experiments among multiple improved models demonstrate that 
the proposed YOLO11-DySample model achieves the best 
performance across key metrics, including precision, recall, and 
mAP50-95. These results confirm superior detection accuracy 
and robustness of the model, making it a promising solution for 
intelligent quality inspection in fastener manufacturing. 
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