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Abstract: The rapid development of autonomous driving has intensified research on decision-making in unstructured road 
scenarios. Conventional rule-based methods often suffer from poor adaptability, limited efficiency gains, and inadequate 
economic performance in such environments. This paper presents a Deep Q-Network (DQN)-based approach that defines 
observation states and decision actions, with a reward function incorporating efficiency, economy, safety, and comfort. 
Simulations in a mining road environment show that the method outperforms traditional approaches, enhancing decision-
making capabilities in unstructured scenarios and offering new perspectives for autonomous driving in complex 
environments. 
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1 INTRODUCTION 

In the core architecture of autonomous driving systems, the 
decision-planning module plays a crucial role. It is directly 
responsible for interpreting perception data, understanding the 
surrounding environment, and ultimately generating safe, 
efficient, and traffic-rule-compliant driving trajectories and 
behavior commands. The performance of this module 
fundamentally determines whether an autonomous vehicle can 
operate reliably in complex, dynamic, and uncertain real-world 
traffic environments [1-3]. 

For a long time, rule-based decision-planning methods [4-7] 
have been the mainstream technology in this field. The core 
paradigm of these methods is that domain experts manually 
design and code a comprehensive set of decision logic based on 
traffic rules, driving experience, and understanding of typical 
scenarios, such as state machines, decision trees, and if-then rule 
sets. During operation, the vehicle's behavior is driven by 
matching the current state to predefined rules. Talebpour et al. 
[8] proposed a lane-changing model based on game theory, and 
by designing a series of state logic, connection methods, and 
conditions, they achieved good lane-changing decision-making 
performance. Aksjonov et al. [9] proposed a rule-based 
autonomous driving decision-making scheme that addressed the 
challenges of complex intersections in mixed traffic 
environments and was applicable to other types of intersections 
with different traffic rules. Hwang et al. [10] proposed a 

reinforcement learning-based lane-changing policy network 
embedded in a finite state machine, which achieves high lane-
changing performance without compromising safety. These 
methods perform well on structured roads; however, when 
facing unstructured road scenarios, especially in special 
environments such as mines, construction sites, and the 
wilderness, the decision-making performance of these methods 
significantly degrades or even fails. 

In recent years, deep reinforcement learning (DRL) [8–10] has 
emerged as a promising technique for autonomous driving 
decision-making and planning. For instance, Wu et al. [11] 
proposed a general decision framework combining Monte Carlo 
Tree Search and DRL, later extending it to continuous state 
spaces without self-play for highway driving cases. Yuan et al. 
[12] introduced a game-theoretic DRL approach, enabling 
vehicles to use 2D LiDAR observations for decision-making at 
unsignalized intersections while modeling multiple interactive 
vehicles with conservative, aggressive, and adaptive behaviors. 
In [13], a hierarchical control framework was proposed for 
highway scenarios, leveraging a dueling deep Q-network to 
derive driving strategies. Shi [14] analyzed driving styles via 
surveys and developed a human-like decision model using DRL. 
Liao et al. [15] improved exploration in end-to-end training by 
introducing a random policy selection strategy, though their 
work mainly focused on policy randomness and experience 
replay rather than unstructured environments such as mining 
roads. 
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This study proposes a DQN-based decision-making framework 
tailored for mining road scenarios. The state and action spaces 
are carefully defined, and a reward function integrating 
efficiency, economy, safety, and comfort is designed. A 
comprehensive reinforcement learning environment is 
constructed to capture road complexity and dynamic 
interactions. Simulation results demonstrate significant 
improvements in driving efficiency, economy, safety, and 
comfort, thereby enhancing decision-making in unstructured 
mining environments. This study provides innovative ideas and 
methods for the application of autonomous driving technology 
in complex road environments such as mining areas, and 
demonstrates the strong adaptability and potential of 
reinforcement learning in practical traffic scenarios. 

2 DQN-BASED DECISION PLANNING 

2.1  ARCHITECTURE OF THE DQN-BASED 

DECISION MODEL 

Deep Q-Networks (DQN) combine deep learning with 
reinforcement learning and are primarily applied to problems 

with discrete action spaces. By interacting with the environment, 
the agent learns an optimal policy that maximizes cumulative 
rewards through appropriate action selection in given states. 

In the proposed DQN-based decision system, the vehicle first 
acquires real-time state information—such as ego-pose and 
surrounding obstacles—from the perception module. After 
preprocessing, these inputs are encoded as a state vector and fed 
into the DQN. Based on the current state, the DQN evaluates 
candidate actions (e.g., turning left, turning right, cruising, 
following, or emergency braking with AEB) and outputs the 
optimal decision. The trajectory planning and control layer then 
generates a feasible trajectory and tracking commands, which 
are translated into low-level control signals such as steering 
angle, throttle, or braking force, and executed by the vehicle 
controller. After each action, the simulation environment 
updates the vehicle state and provides both new sensory 
information and a corresponding reward, which are used by the 
DQN to update its policy. This iterative process enables 
continuous interaction between agent and environment, 
progressively optimizing decision-making performance (see 
Figure 1). 

 

FIGURE 1 OVERALL SYSTEM ARCHITECTURE 

2.2  TRAINING STATE AND ACTION DEFINITIONS 

2.2.1  STATE DEFINITION 

In unstructured mining road scenarios, environmental 
uncertainty is significant. Therefore, the state space must 
capture not only the vehicle’s kinematic state, but also road 
constraints and dynamic features of surrounding objects. In this 
study, the state space is partitioned into the following 
components: 

Reference Line Constraint 

The reference line provides the desired trajectory reference for 
vehicle movement. The lateral offset and heading angle 
deviation between the vehicle and the reference line are defined 
as follows: 

[ , ]ref la rt e fs d                    (1) 
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Where latd  represents the lateral distance between the vehicle's 

center and the reference line, and ref  represents the 

difference between the vehicle's heading angle and the tangent 
angle of the reference line. 

Road boundary constraints 

Due to the presence of irregular slopes or temporary obstacles 
on mine site roads, vehicles need to consider the distance from 
the road boundary, defined as follows: 

[ , ]road lef it r ghts dd                          (2) 

Where , right tlef dd  represent the minimum distances from the 

vehicle to the left and right boundaries, respectively. 

Obstacle information 

Dynamic or static obstacles in the mining environment (such as 
large mining vehicles, pedestrians, fixed equipment, etc.) must 
be included in the state representation. Select the N nearest 
obstacles to the vehicle, and represent their relative position, 
relative speed, and relative heading as follows: 

, , ,[ ], 1,...,i i i ii
objs Nx y v i                (3) 

Vehicle State 

The kinematic state of the vehicle is defined as follows: 

[ , , , ]es x y v                        (4) 

Here, (x, y) represents the vehicle's position in the global 
coordinate system, v represents the vehicle speed, and   
represents the heading angle. 

Global information 

Mining operations tasks typically rely on planned routes; 
therefore, the state information should also include global 
reference trajectory points or target task points, defined as 
follows: 

[ , , , ]g g g g
globals x y v                    (5) 

Where ( , , , )g g g gx y v   represents the position, velocity, and 

direction of the reference path or target point in the global 
coordinate system. 

Therefore, the complete state set S is defined as follows: 

( , , , , )e ref road globalS s s s s ObjList              (6) 

Where, 
1 2{ , ,..., }N
Obj Obj ObjObjList s s s . 

2.2.2  ACTION DEFINITION 

In unstructured mining road scenarios, the vehicle must adapt its 
behavior flexibly according to road geometry, surrounding 
traffic participants, and unexpected events. In this study, the 
action space is discretized into a set of behaviors to ensure 

interpretability and practical feasibility in complex 
environments. The action set consists of five maneuvers: turning 
left, turning right, cruising, following, and emergency braking 
(AEB): 

AEB{ , , , }turn cruise followA a a a a             (7) 

2.3  REWARD FUNCTION DESIGN 

The core mechanism of reinforcement learning lies in guiding 
the agent to learn an optimal policy by maximizing cumulative 
long-term rewards. This makes it essential that the reward 
function closely reflects the driver’s decision logic and desired 
behavior. To achieve a comprehensive evaluation, the reward 
function is designed from four aspects: operational efficiency, 
economy, safety, and comfort. 

2.3.1  OPERATIONAL EFFICIENCY AND ECONOMIC REWARD 

Operational efficiency is critical for autonomous vehicles, 
particularly in logistics and transportation scenarios such as 
mining areas. Encouraging the vehicle to maintain higher speeds 
reduces travel time and enhances transportation efficiency 

ref
eff

max

( )
1

v v k
R

v


                      (8) 

Here, refv v、  represent the current vehicle speed and the 

reference speed, respectively. Reff  represents the reward term. 

Evaluating economic performance can be quite complex; this 
article uses speed tracking performance as a simplified 
evaluation method. Since the target speed is designed based on 
optimal fuel efficiency, better speed tracking performance 
indicates better overall economic performance. Therefore, 
economic performance and operational efficiency can be 
considered equivalent and combined for evaluation. 

2.3.2  SAFETY REWARD 

The safety reward is composed of two components: obstacle 

collision reward 1safeR  and boundary reward 2safeR . 

Collision reward 1safeR : Collisions are critical events and must 

be strictly avoided. A severe penalty is assigned if a collision 
occurs; otherwise, the reward is zero: 

safe1

1000 if collision

else
R


 


，  

0，    
                 (9) 

Boundary reward 2safeR : Vehicle safety relative to road 

boundaries is evaluated based on the minimum lateral distance 
to the left and right boundaries and the minimum longitudinal 
distance to potential collision boundaries. Penalties are applied 
when the vehicle is too close to boundaries, while larger 
distances are rewarded to encourage safe lane-keeping: 
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th
lat lat

safe2 max
lat

d d
R

d


                        (10) 

Here, th
latd  represents the minimum allowable distance 

between the vehicle's outer boundary and the road boundary, and 

latd  represents the actual distance.  

Therefore, the final safety reward Rsafe is: 

safe safe1 safe2R R R                     (11) 

2.3.3  COMFORT REWARD 

The comfort reward evaluates the smoothness and naturalness 
of vehicle motion. It includes two aspects: (1) constraining 
abrupt speed changes by penalizing large differences from the 
previous time step, encouraging operation within reasonable 
acceleration limits to avoid sudden acceleration or braking; (2) 
limiting rapid changes in heading angle to prevent frequent left-
right oscillations, thereby enhancing overall ride comfort. 

pre pre

conf 1 2
max max

(1 ) (1 )
v v

R
v

 
 


 

                (12) 

Here, pre prev 、  represents the speed and heading angle at the 

previous time step. 

2.3.4  OVERALL REWARD 

The total reward is obtained by summing the individual 
components, guiding the vehicle to consider operational 
efficiency, economy, safety, and comfort simultaneously, and 
thereby achieving optimal decision-making and planning. 

t 1 eff 2 safe 3 confR R R R                  (13) 

2.4 ENVIRONMENT CONSTRUCTION 

The experimental environment in this study is built based on 
long-term operational data collected from 60 mining trucks in a 
mining area. Key features of the mining roads were extracted for 
analysis and integration. 

2.4.1 ROAD NETWORK MODEL 

The mining road network can be represented as a directed graph, 
where a series of road segments connect critical nodes such as 
intersections and loading zones. Each road segment is 
characterized by three core parameters, which collectively 
influence the vehicle’s dynamic behavior: 

Slope angle: simulates uphill and downhill terrain 

min max[ , ]n                                     (14) 

Road curvature: simulating both curved and straight roads 

1
n

nR
                                        (15) 

Where nR  represents the radius of curvature of the curve. 

(c) Tire-road adhesion coefficient: simulates road conditions 
such as wet or muddy surfaces. 

[ , ]n low high                            (16) 

These parameters are statistically derived from the historical 
operational data of 60 mining trucks and follow a specific 
empirical distribution ( , , )P    , enabling the simulation to 
randomly generate diverse road segment combinations that 
approximate the uncertainty of real-world environments. 

2.4.2 OBSTACLE GENERATION MODEL 

The generation of dynamic obstacles is a core component of the 
simulation environment. The physical attributes of these 
obstacles are determined by measuring the dimensions of 
vehicles operating in the mining area, and their size parameters 
(length L, width W, height H) are randomly generated within the 
measured range. 

, (0,1)

, (0,1)

, (0,1)

j base j j

j base j j

j base j j

L L L

W W W

H H H

 

 

 

     

     

     

           (17) 

Among them, , ,base base baseL W H  is the reference size and 

, ,L W H    is the possible change. 

To realistically replicate mining traffic flow, the trajectories of 
dynamic obstacles are generated based on long-term operational 
data from 60 mining trucks. Typical behavior patterns, such as 
fully loaded uphill, empty downhill, and intersection merging, 
are obtained through clustering. The motion state of each 
obstacle is fully described by a state vector: 

T( ) [ ( ), ( ), ( ), ( )]j j j j jX t x t y t v t t             (18) 

Here, ( ( ), ( ))j jx t y t  represents the sequence of path points 

extracted from historical data. The trajectory of a dynamic 
obstacle is determined based on its location on different road 

segments; ,base base
j jv   assigns different paths and base speeds 

to it, and a random perturbation ( )t  is introduced to simulate 
the uncertainty in driving behavior. 

2( ) ( ), ~ (0, )base
j j v v vv t v t                      (19) 

2( ) ( ), ~ (0, )base
j jt t                         (20) 

Where noise variance 
2 2,v    is obtained from historical data. 

2.5  DQN NETWORK DESIGN 

The DQN employs a deep neural network as a function 
approximator to estimate the Q-value function Q(s,a), 
representing the expected cumulative reward for taking action 
aaa in state sss. A critic network predicts the current Q-values, 
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while experience replay stabilizes training by breaking 
correlations between consecutive samples and improving 
convergence. A target network is used to generate target Q-
values, with parameters periodically copied from the critic to 
reduce bias and variance. The procedure is as follows: 

(1) Initialize: the current network. 

(2) Action selection: via ε-greedy strategy: initially, actions are 
chosen randomly with high probability (ε) to explore the 
environment; ε gradually decreases during training, favoring 
actions with the highest Q-value to balance exploration and 
exploitation. 

(3) Execute action: a, observe reward r and next state s, and store 
'( , , , )s a r s  in the replay buffer. 

(4) Sample mini-batches: from the buffer to compute target Q-
values. The network is trained by minimizing the mean squared 
error (MSE) between predicted and target Q-values: 

2

1

1
( ( , ; ) )

N

ii
L Q s a y

N



               (21) 

The loss function is minimized through the mini-batch gradient 
descent algorithm to update the current network ( , ; )Q s a  . 

(5) Every N steps, synchronize the current network ( , ; )Q s a   
with the target network. 

 

FIGURE 2 FLOWCHART OF THE DQN ALGORITHM 

3  ALGORITHM TRAINING 

The simulation platform used in this study is Prescan + Matlab. 
Prescan provides essential elements for autonomous driving, 

including driving environments, perception devices, and vehicle 
dynamics, and was used to construct a 3D mining scenario (Fig. 
3). Matlab was employed for algorithm simulation, particularly 
reinforcement learning. The proposed method was compared 
with a rule-based baseline under identical conditions. 

 

FIGURE 3 PRESCAN MINING SITE SCENE 
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3.1 TRAINING ENVIRONMENT INTEGRATION 

The designed DQN agent was integrated into the training 
environment, which consists of global path planning, local path 
planning, speed planning, control units, and the Prescan 

simulation scenario. Obstacle and ego-vehicle states from 
Prescan were used as inputs to the agent, along with 
corresponding rewards. The agent’s decisions were then passed 
to the local planning and control modules. The overall 
framework is shown in Fig. 4. 

 

FIGURE 4 SYSTEM SOFTWARE ARCHITECTURE 

3.2 MODEL TRAINING 

Each training episode was limited to 1500 steps, terminating 
either at the maximum step count or upon reaching the 

destination. A total of 20,000 episodes were conducted. The 
training process is illustrated in Fig. 5, with key parameters 
listed in Table.1. 

 

FIGURE 5 REINFORCEMENT LEARNING TRAINING PROCESS 

TABLE 1 MODEL TRAINING PARAMETERS 

Parameter Description Value 

xT  
Simulation time step (s) 0.1 

fT  
Total simulation time (s) 150 

lens  
Total path length (m) 300 

widthroad  
Total road width (m) 20 
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Parameter Description Value 

refV  Maximum vehicle reference 
speed (m/s) 

5 

BatchSize 
Number of samples selected 

per training iteration 
128 

  Discount factor for cumulative 
reward 

0.9 

critica  
Critic network learning rate 0.001

Parameter Description Value 

  Greedy policy parameter 0.0005

Episodes 
Total number of simulation 

episodes 
20000

maxstep  
Maximum number of iterations 1500

As shown in Fig. 7, after 20,000 episodes in fixed scenarios, the 
model converged, with rewards stabilizing as the agent learned 
the expected policy. The average driving speed increased from 
1 m/s to 3.5 m/s, approaching the global target speed, while the 
average travel distance improved from 90 m to 330 m, aligning 
with the desired trajectory length. 

 

FIGURE 7 REWARD TRAINING RESULTS 

4  EXPERIMENTAL TESTING AND 

ANALYSIS 

Following practical operation workflows, both Model-in-the-
Loop (MIL) and Hardware-in-the-Loop (HIL) tests were 

conducted under identical conditions to compare rule-based and 
DQN-based decision-making methods. 

4.1 MIL TESTING AND ANALYSIS 

As shown in Fig. 8, in the simulated mining road scenario, the 
rule-based method behaves conservatively in complex traffic. 
When encountering a slower lead vehicle, it tends to follow for 
extended periods without overtaking, resulting in lower average 
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speed and prolonged task completion. In contrast, the DQN-
based method autonomously decides whether to overtake or 
cruise, significantly improving traffic efficiency and task 
completion time while ensuring safety. 

Table 2 indicates that both methods perform comparably in 
terms of comfort. However, the DQN approach achieves higher 

efficiency by completing tasks faster. Although the frequency of 
acceleration, deceleration, and yaw rate exceeding thresholds is 
similar, the DQN method dynamically balances efficiency and 
comfort through real-time perception and learning, 
demonstrating superior intelligence and adaptability. 

 

FIGURE 8 VEHICLE DRIVING DATA COMPARISON 

TABLE 2 COMPARISON OF EVALUATION METRICS 

Metric 
Category 

Metric Name 

Rule-based 
Decision-
making 
Method 

DDPG-
based 
Decision-
making 
Method 

Driving 
efficiency 

Time to 
complete the 
task (s) 

245 122 

Average 
speed (m/s) 

1.46 3.47 

Comfort 
level 

Number of 
times 
acceleration 
exceeded the 
threshold 

28 32 

Number of 
times 
deceleration 
exceeded the 
threshold 

25 23 

4.2 HIL TESTING AND ANALYSIS 

To further validate the feasibility and effectiveness of the 
proposed DQN-based decision-making method, Hardware-in-
the-Loop (HIL) tests were conducted. The setup included a 
central domain controller, real-time simulator, sensor suite, and 
mining scenario simulation platform (Fig. 9). 

The domain controller provides 254 TOPS + 230 DMIPS AI 
computing power, supports redundant multi-sensor fusion (8 
cameras, 3 LiDARs, and 10 radar/ultrasonic sensors), and 
integrates 5G-BOX, RTK, and IMU modules. It is designed for 
harsh mining environments with ASIL-D safety, IP67 protection, 
wide voltage (9–36V), and operating range from −40℃ to 85℃, 
supporting L2–L4 autonomous functions. 
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FIGURE 9 HIL TEST BENCH ARCHITECTURE 

4.3 HIL TESTING PROCEDURE AND RESULTS 

In the HIL tests, scenarios defined in MIL were migrated to the 
real-time simulator, covering diverse mining conditions such as 
slopes, intersections, and multi-vehicle traffic. 

Curved road scenarios (Fig. 10): Rule-based methods tended to 
follow conservatively when facing multiple obstacles. In 
contrast, the DQN method, leveraging curvature, slope, and 
obstacle distribution, learned optimal strategies to execute safe 
overtaking. 

Muddy slope scenarios (Fig. 11): Rule-based methods struggled 
to define safe overtaking boundaries, often resorting to low-
speed following or stopping. The DQN method, trained on 
extensive experience including failed overtakes, was able to 
identify safe margins and complete overtaking effectively. 

Overall, rule-based methods showed rigidity and delays in 
dynamic environments. The DQN policy, however, maintained 
safety and ride comfort while enabling adaptive and efficient 
decision-making, meeting practical mining operation 
requirements. 

 

FIGURE 10 OBSTACLE AVOIDANCE SCENARIO ON A CURVED ROAD 
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FIGURE 11 STRAIGHT, GENTLY SLOPING, MUDDY TERRAIN SCENE 

5 CONCLUSION 

This paper proposed a Deep Q-Network (DQN)-based decision-
making and planning method to address complex driving 
challenges in unstructured road environments. By carefully 
defining the state-action space and designing a reward function 
that balances efficiency, economy, safety, and comfort, 
comprehensive experiments were conducted in simulated 
mining scenarios. Results from both MIL and HIL tests 
consistently demonstrated that the proposed method 
outperforms rule-based approaches in improving operational 
efficiency, reducing fuel consumption, enhancing safety, and 
ensuring ride comfort. 

Looking ahead, with the growing demand for autonomous 
driving in mining and other special scenarios, the proposed 
approach shows strong potential for real-world deployment. 
Future work will further explore broader applications of deep 
reinforcement learning in decision-making and planning, 
contributing to improved performance and reliability of 
autonomous vehicles. 
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