Analysis of Population Productivity Differences Among Tibetan Hulless Barley Varieties Under Fertilizer-Density Interactions
Main Article Content
Abstract
Addressing the critical constraints of low tillering survival rate and population productivity on yield improvement in hulless barley (Hordeum vulgare L. var. nudum) within the Qinghai-Tibet Plateau region, this study employed a two-factor split-plot design (4 fertilizer levels×3 planting densities×2 varieties) to systematically analyze the regulatory mechanisms of fertilizer-density interactions on tillering dynamics and population productivity. The results indicated that the jointing stage is the key period for tiller regulation. Path analysis revealed for the first time that the IAA (Indole-3-acetic acid)/ZT (Zeatin) ratio exerted the strongest direct effect on tiller number (path coefficient = 0.443). The FC3 treatment (N 75 kg/ha + P₂O₅ 150 kg/ha) significantly promoted tillering, but hormonal responses differed markedly between varieties: High fertilizer (FC4) strongly induced ZT synthesis in Kunlun 14. Kunlun 15 maintained high IAA stability under FC3. Significant diminishing marginal returns were observed for nitrogen and phosphorus utilization. Kunlun 14 achieved peak nitrogen use efficiency (27.71%) and maximum yield (7808 kg/ha) under medium density (MD) combined with FC3. Kunlun 15 attained optimal nitrogen efficiency (24.26%) and high yield (7165 kg/ha) under low density (LD) with FC2, while excessive fertilization under high density resulted in negative agronomic efficiency. Optimization pathways for population structure revealed: Yield exhibited a highly significant positive correlation with seed setting rate (r = 0.962**) and grain weight per spike, but a trade-off existed between effective panicle number and 1000-grain weight (r=-0.218*). For Kunlun 14, MD-FC3 synergistically increased panicle number and grain weight. For Kunlun 15, LD-FC2 expanded panicle number, whereas high density reduced grain weight per spike by 13.9% due to ZT/IAA imbalance. These findings elucidate fertilizer and density management strategies for enhancing tillering, panicle formation, and high-yield population structure establishment in hulless barley, providing both theoretical and practical foundations for rational tiller utilization and high-yield cultivation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Guo T X, Yao X H, Wu K L, et al. Response of the rhizosphere soil microbial diversity to different nitrogen and phosphorus application rates in a hulless barley and pea mixed-cropping system[J]. Applied Soil Ecology, 2024, (195):105262. https://doi.org/10.1016/j.apsoil.2023.105262.
Guo A M, Yao X H, Wu K L, et al. Effects of different planting densities and fertilizer application on Highland barley tiller dynamics and population structure[J]. Acta Agriculturae Boreali-occidentalis Sinica ,2024,33(09):1659-1666.
Wei H L, Fei S, Qun T L, et al, Tillering and panicle branching genes in rice[J]. Gene, 2014, 1(537): 1-5.
Naruoka, Y., Talbert, L.E., Lanning, S.P. et al. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat[J]. Theor Appl Genet ,2011, 123: 1043–1053.
Kariali E, Mohpatra P K. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars[J]. Plant Growth Regulation, 2007, 53(3): 215-223.
Hu Y S, Ren T H, Li Z, et al. Molecular mapping and genetic analysis of a QTL controlling spike formation rate and tiller number in wheat[J]. Gene, 2017, 634: 15-21.
Xie Q, Mayes, Sean, Sparkes Debbie L. Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population JF Annals of Botany[J]. Annals of Botany, 2016, 1(117): 51-66. https://doi.org/10.1093/aob/mcv147
Huang M, Yang C L, Qiu M J, et al. Tillering responses of rice to plant density and nitrogen rate in a subtropical environment of southern China[J]. Field Crops Research, 2013, 149: 187-192. doi.org/10.1016/j.fcr.2013.04.029.
Muhammad Abid, Shafaqat Ali, Lei K Q, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.) [J]. Scientific Reports, 2018, 8: 4615. DOI:10.1038/s41598-018-21441-7.
M. Lorenzo, S.G. Assuero, J.A. Tognetti. Low temperature differentially affects tillering in spring and winter wheat in association with changes in plant carbon status[J]. Annals of Applied Biology, 2016,166(2): 236-248. doi.org/10.1111/aab.12177.
Dingkuhn M , De Datta S K , Pamplona R ,et al. Effect of late-season N fertilization on photosynthesis and yield of transplanted and direct-seeded tropical flooded rice. II. A canopy stratification study[J]. Field Crops Research, 1992, 28(3): 235-249. DOI:10.1016/0378-4290(92)90043-9.
Noemí Mateo㎝arín, ngela D. Bosch㏒erra, Molina M G ,et al. Impacts of tillage and nutrient management on soil porosity trends in dryland agriculture[J]. European Journal of Soil Science, 2021.DOI:10.1111/ejss.13139.
Liu, Y., Li, C., Fang, B.et al. Potential for high yield with increased seedling density and decreased N fertilizer application under seedling-throwing rice cultivation[J]. Scientific Reports ,2019,9: 731. https://doi.org/10.1038/s41598-018-36978-w.
Khem, B., Hirai, Y., Yamakawa, T, et al. Effects of different application methods of fertilizer and manure on soil chemical properties and yield in whole crop rice cultivation[J]. Soil Science and Plant Nutrition, 2018, 64(3):406–414. https://doi.org/10.1080/00380768.2018.1443399.
Jean Dauzat, Pascal Clouvel, Delphine Luquet, et al. Using Virtual Plants to Analyse the Light-foraging Efficiency of a Low-density Cotton Crop[J].Annals of Botany, 2008,101(8):1153–1166. https://doi.org/10.1093/aob/mcm316.
Bindraban, P.S., Dimkpa, C., Nagarajan, L. et al. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants[J]. Biol Fertil Soils,2015,51:897–911. https://doi.org/10.1007/s00374-015-1039-7.
José A. O'Brien, Andrea Vega, Eléonore Bouguyon, Gabriel Krouk, Alain Gojon, Gloria Coruzzi, RodrigoA. Gutiérrez. Nitrate Transport, Sensing, and Responses in Plants[J], Molecular Plant, 2016,9(6):837-856. https://doi.org/10.1016/j.molp.2016.05.004.
Liu J Y, Zhang D Y, Zhang Y, et al. Research on the optimal application time of barley nodulation and spike fertilizer[J]. Shanghai Agricultural Science and Technology, 2007, (05): 57-58.
Bindraban, P.S., Dimkpa, C., Nagarajan, L. et al. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants[J]. Biol Fertil Soils, 2015, 51: 897–911. https://doi.org/10.1007/s00374-015-1039-7.
Prystupa P, Savin R, Slafer G A. Grain number and its relationship with dry matter, N and P in the spikes at heading in response to N×P fertilization in barley[J]. Field Crops Research, 2004, 90(23): 245-254. https://doi.org/10.1016/j.fcr.2004.03.001.
Amadou H B, Adounigna K, Amadou H D, et al. Development of a Biological Phosphate Fertilizer to Improve Wheat (Triticum Aestivum L.) Production in Mali[J]. Procedia Engineering, 2016, 138: 319-324. https://doi.org/10.1016/j.proeng.2016.02.091.
Tadele Z. Raising Crop Productivity in Africa through Intensification[J]. Agronomy. 2017, 7(1): 22. https://doi.org/10.3390/agronomy7010022.
Zhen J X, Agriculture C O. Effects of Different Plant Density and Nitrogen Application Rate on Grain Yield and Quality of Waxy Wheat[J]. Journal of Huazhong Agricultural University, 2010, 29(1): 9-13.
Stephen, R. C., Saville, D. J., Drewitt, E. G. Effects of wheat seed rate and fertiliser nitrogen application practices on populations, grain yield components and grain yields of wheat (Triticum aestivum)[J]. New Zealand Journal of Crop and Horticultural Science, 2005, 33(2), 125–138. https://doi.org/10.1080/01140671.2005.9514341.
Duan, J., Wu, Y., Zhou, Y. et al. Grain number responses to pre-anthesis dry matter and nitrogen in improving wheat yield in the Huang-Huai Plain[J]. Scientific Reports, 2018, 8: 7126. https://doi.org/10.1038/s41598-018-25608-0.
Fang Y, Xu B C, Neil C, et al, Grain yield, dry matter accumulation and remobilization, and root respiration in winter wheat as affected by seeding rate and root pruning[J]. European Journal of Agronomy, 2010,33(4): 257-266. https://doi.org/10.1016/j.eja.2010.07.001.
Wu, H., Xiang, J., Zhang, Y. et al. Effects of Post-Anthesis Nitrogen Uptake and Translocation on Photosynthetic Production and Rice Yield[J]. Scientific Reports, 2018,8:12891. https://doi.org/10.1038/s41598-018-31267-y.
Liu, Y., Li, C., Fang, B. et al. Potential for high yield with increased seedling density and decreased N fertilizer application under seedling-throwing rice cultivation[J]. Sci Rep, 2019, 9: 731. https://doi.org/10.1038/s41598-018-36978-w.
Ren Y C, Zhang Z B, Wu K L, et al. New barley variety Kunlun 14[J]. China Seed Industry, 2014, (08): 85. doi: 10.19462/j.cnki.1671-895x.2014.08.044.
Ren Y C, Wu K L, Yao X H, et al. Selection and breeding of new high-yielding and high-quality barley variety Kunlun 15 and its characteristic features[J]. Journal of Triticeae Crops, 2014, 34(08): 1161. https://link.cnki.net/urlid/10.7606/j.issn.1009-1041.2014.08.22.
Jacqueline M.R. Bélanger, J.R. Jocelyn Paré, et al. Chapter 2 High performance liquid chromatography(HPLC): Principles and applications[J]. Elsevier, 1997, 18: 37-59. https://doi.org/10.1016/S0167-9244(97)80011-X.
Menefee S.G, Overman O.R, A Semimicro-Kjeldahl Method for the Determination of Total Nitrogen in Milk[J]. Journal of Dairy Science, 1940, 23(12): 1177-1185. https://doi.org/10.3168/jds.S0022-0302(40)92829-6.
M. Maheswari, A.N.G. Murthy, A.K. Shanker. 12-Nitrogen Nutrition in Crops and Its Importance in Crop Quality[J]. The Indian Nitrogen Assessment, 2017, 175-186. https://doi.org/10.1016/B978-0-12-811836-8.00012-4.
Luo Z, Liu H, Li W P, et al. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density[J]. Field Crops Research, 2018,218: 150-157. https://doi.org/10.1016/j.fcr.2018.01.003.
Olk, D., Cassman, K., Simbahan, G. et al. Interpreting fertilizer-use efficiency in relation to soil nutrient-supplying capacity, factor productivity, and agronomic efficiency[J]. Nutrient Cycling in Agroecosystems 1998,53: 35-41. https://doi.org/10.1023/A:1009728622410.
Salar S, Gianluca B, Abhisek B, et al. Genetics of barley tiller and leaf development[J]. Journal of Integrative Plant Biology, 2019,61(3): 226-256. https://doi.org/10.1111/jipb.12757.
Wang H W, Chen W X, Kai Eggert, et al. Abscisic acid influences tillering by modulation of strigolactones in barley[J]. Journal of Experimental Botany, 2018, 69(16): 3883–3898. https://doi.org/10.1093/jxb/ery200.
Kelly JH, Gilmore AJ, Situmorang A. Brewer PB, et al. Strigolactones Coordinate Barley Tillering and Grain Size[J]. Journal of Experimental Botany. 2025, 229. https;//doi: 10.1093/jxb/eraf229.
Zhang, Z., Zhang, Y., Shi, Y. et al. Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation[J]. Scientific Reports, 2020,10, 20310. https://doi.org/10.1038/s41598-020-75388-9.
Bauer, B., von Wirén, N. Modulating tiller formation in cereal crops by the signalling function of fertilizer nitrogen forms[J]. Scientific Reports 2020,10, 20504. https://doi.org/10.1038/s41598-020-77467-3.
Song Y, Wan G Y, Wang J X, et al. Balanced nitrogen–iron sufficiency boosts grain yield and nitrogen use efficiency by promoting tillering[J]. Molecular Plant, 2023, 16(12): 2004-2010. https://doi.org/10.1016/j.molp.2023.10.019.
Nowak, R., Szczepanek, M., Błaszczyk, K. et al. Response of photosynthetic efficiency parameters and leaf area index of alternative barley genotypes to increasing sowing density[J]. Scientific Reports,2024,14, 29779. https://doi.org/10.1038/s41598-024-81783-3.
Shah JM, Muntaha ST, Ali E, et al. Comparative study of the genetic basis of nitrogen use efficiency in wild and cultivated barley[J]. Physiol Mol Biol Plants. 2019,25(6):1435-1444. doi: 10.1007/s12298-019-00714-z.
Bauer B, von Wirén N. Modulating tiller formation in cereal crops by the signalling function of fertilizer nitrogen forms[J]. Scientific Reports. 2020,25;10(1):20504. doi: 10.1038/s41598-020-77467-3.
Schleuss PM, Widdig M, Heintz-Buschart A, et al. Interactions of nitrogen and phosphorus cycling promote P acquisition and explain synergistic plant-growth responses[J]. Ecology. 2020, 101(5): e03003. doi: 10.1002/ecy.3003.
Ferreira IEP, Zocchi SS, Baron D. Reconciling the Mitscherlich's law of diminishing returns with Liebig's law of the minimum. Some results on crop modeling[J]. Math Biosci. 2017, 293: 29-37. doi: 10.1016/j.mbs.2017.08.008.
Hu Y, Sun L, Xue J, et al. Reduced Nitrogen Application with Dense Planting Achieves High Eating Quality and Stable Yield of Rice[J]. Foods. 2024, 13(18): 3017. doi: 10.3390/foods13183017.
Deng J, Feng X, Wang D, et al. Root morphological traits and distribution in direct-seeded rice under dense planting with reduced nitrogen[J]. PLoS On. 2020, 15(9): e0238362. doi: 10.1371/journal.pone.0238362.
Zahoor R, Zhao W, Abid M, et al. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress[J]. Journal of Plant Physiology. 2017,215:30-38. doi: 10.1016/j.jplph.2017.05.001.
Ahanger MA, Qin C, Begum N, et al. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation[J]. BMC Plant Biol. 2019, 8; 19(1): 479. doi: 10.1186/s12870-019-2085-3.
Cheng H, Yuan M, Tang L, et al. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm[J]. Sci Total Environ. 2022, 817: 152878. doi: 10.1016/j.scitotenv.2021.152878.